Page 241 - MORPHOLOGIE DES STRUCTURES
P. 241

www.academieroyale.be

                                                                  L’ARC, LE CÂBLE ET LA STRUCTURE HAUBANÉE                                                                                               241

Lorsque suspentes et tirant sont en un matériau 10 fois plus résistant et :
• le cas de l'arc de section variable :
– sans suspentes :

∆10  =     H   +     1  f + 11s L                ;                                                                                                                                                       1.4.3.5.
           L         4     pH

– avec suspentes :

∆10  = 11 H          +  1  f  + 11s              L  .                                                                                                                                                    1.4.3.6.
           L            4      p                 H

• le cas de l'arc de section constante :

– sans suspentes :

∆10  =     ∆c     +  5  s  L     ;                                                                                                                                                                       1.4.3.7.
                     2  p  H

– avec suspentes :

∆10  =     ∆c     + 10  H     +  5            s  L  .                                                                                                                                                    1.4.3.8.
                        L        2            p  H

2. La figure 1.4.3.1 reprend l'ensemble des ∆ déterminés sous charge uniformément répartie (sur la membrure infé-

rieure pour les treillis), ici et aux chapitres précédents, et est très riche en enseignements mise en regard avec la

figure 1.4.3.2. reprenant les W pour les mêmes structures.

7             Eδ                                                                                        10                         σV
              σL                                                                                                                   FL
     ∆  p  =                                     B : buton                                                                  Wp  =      C = colonnettes
                                                 C : colonnettes                                                                       S = suspentes
                                                 S : suspentes                                          9                              B = buton                                                    IPE
                                                 T : tirant                                                                            T = tirant

6                                                                                                                                                          tubes rectangulaires à plat

                                                                                                                                                                                                HE
                                                                                                        8

                                                                                                                                                                                  W

5                                                                                                                                                                   tubes carrés
                                                                                                        7 tubes rectangulaires verticaux
                        arc variable + T + S
4                                                                                                                                          tubes ronds

                                                                                                        6

                                                                  treillis HOWE-PRATT

                                                                                                        5

3

                                                                  MULTI-LIERNES 3 (n impair)            4

                                                                  MULTI-LIERNES 3 (n pair)

                                                                  treillis WARREN

                                                                  (pair et impair confondus)            3                                                                         MULTI-WARREN HOMOGÈNE

2                                                      câble + B + C / arc + T + S                                                                                                MULTIWARREN VARIABLE OPTIMUM
                                                                                                                                                                                  WARREN MULTI-LIERNES 3
                                                       arc + S                                                                                                                    treillis WARREN Wα(i≤)120°
                                                       arc variable + T, arc variable + T + C

                                                       câble + B, câble + B + S / arc + T, arc + T + C  2

                                                       câble + C / arc + S

1 arc variable, arc variable + C                                                                                                                            arc + T + ∞ S
                                                                                                                                                            arc + T + ∞ C
                                                       câble, câble + S / arc, arc + B                                                                      arc + T

                                                       poutres droites (sections sym.) (∆M)             1

                                                                                                                         L                       arc + ∞ S                                                              L
                                                                                                                        H             arc + ∞ C                                                                         H
00                                                                                                                                 arc
   0 2 4 6 8 10 12 14 16 18 0                                                                                                                                                                            25 30
                                                                                                                                       5 10 15 20
                                    Figure 1.4.3.1.
                                                                                                                                                  Figure 1.4.3.2.

Ces résultats donnent lieu aux commentaires qui suivent.
2.1. Les poutres droites de sections symétriques et constantes sont toujours plus volumineuses que les treillis ou les
arcs et câbles, mais aussi toujours plus raides.
   236   237   238   239   240   241   242   243   244   245   246