Page 348 - MORPHOLOGIE DES STRUCTURES
P. 348
www.academieroyale.be
348 LES PORTIQUES
20 L = H =10 20 L =10, H = 5
W h1 h2 W h1 h2
18 18
16 16 W+1H W+1H
W+1H W+1H W
W
kL kL
kL kL
14 14
12 12
10 10
∞ 10 10 4 2 k =1
86 4 ∞
8 2 k =1
7.5
8
7.5
Z =0.75 Z =0.75
6 8 2 k =1 6
10 6 4 2 k =1
∞ ∞
10 4 2 k = 1
4 10 Z =0.375 4 ∞ 10 2 k =1 Z =0.375
3.75 ∞ 8 64 Z =0.25 3.75 Z =0.25
2.5 2.5
2 2
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Figure 2.3.3. Figure 2.3.4.
2.4. LE PORTIQUE II2
p2H 2 − p1L − p2H 2 − p1L − p2 H 2 − p1L p2H 2 p1
2L 2 2L 2 2L 2 2
p2H p2H p1 L 2 p2 H2 2
T 8 p1 L2
1+
Figure 2.4.2.
N p2H 2 p2 h1 , Ω1 , I1 p2 H
Rv, A h2 , Ω2 , I 2 MD
2
M L 2.4.1.
2.4.2.
nb = 3 ; nl = 5 ; nm = 3 ; nn = 4 ; nr = 5 : Dh = 0 . Rh, A Rh,D
Rv,D
Figure 2.4.1.
– si (L H )2 ≤ 1 k : W = H L + 4 (Z k ) (L h1 + H h2 + H h3 ) ( H L )2 + (1 k ) ( H L )3 ;
– si (L H )2 ≥ 1 k :
W = H L + Z[(L h1 ) (L H + (1 k ) H L )2 + (4 k ) H h2 + (4 k ) H h3 ]( H L )2 + (1 k ) ( H L )3 .
Lorsque p2 = 0 ( k = ∞ ) : W = Z L h1 + H L .
Pour L h1 = H h2 = H h3 = 10 :