Page 349 - MORPHOLOGIE DES STRUCTURES
P. 349
www.academieroyale.be
LES PORTIQUES 349
– si (L H )2 ≤ 1 k : W = H L + 120 (Z k )( H L )2 + (1 k )( H L )3 ; 2.4.3.
– si (L H )2 ≥ 1 k : W = H L + Z[10[L H + (1 k ) H L]2 + (80 k )]( H L )2 + (1 k )( H L )3 . 2.4.4.
Pour L h1 = 10 et H h2 = H h3 = 5 :
– si (L H )2 ≤ 1 k : W = H L + 80 ( Z k )( H L )2 + (1 k )( H L )3 ;
– si (L H )2 ≥ 1 k : W = H L + Z[10[L H + (1 k ) H L]2 + (40 k )]( H L )2 + (1 k )( H L )3 .
20 W L = H = H = 10 20 W L =10 ; H = H = 5
18 h1 h2 h3 18 h1 h2 h3
16 W+1H W+1H 16 W+1H W+1H
W W
kL kL kL kL
14 14
12 12
k =1 k =1
2 10 2
10
4
4 86
10 8 6 10
∞ 8 ∞
7.5
8
7.5 6
Z =0.75 Z =0.75
Z =0.375
k =1 k =1
62 2
64 8 64
8 ∞ 10
∞ 10
k =1 Z =0.375 4 ∞ 10 8 6 4 2 k =1
4 3.75
3.75 ∞ 10 8 6 4 2
2.5 2.5 Z =0.25
Z =0.25
22
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Figure 2.4.3. Figure 2.4.4.