Page 347 - MORPHOLOGIE DES STRUCTURES
P. 347
www.academieroyale.be
LES PORTIQUES 347
20 L = H = H = 10 20 L = 10 ; H = H = 5
W h1 h2 h3 W h1 h2 h3
18 18
16 W+ 1 H W+ 3 H 16 W+ 1 H W+ 3 H
W 2k L 2k L W
2k L 2k L
14 14
12 12
k =1
k =1
2
10 4 2
86 10 4
10 86
10
8∞ 8 ∞
7.5 7.5
Z =0.75 Z =0.75
k =1 6
k =1 Z =0.375
2 Z =0.25
6 64 2
8 64
10
10 8
∞
∞
4 10 8 6 4 2 k =1 Z =0.375 4 ∞ 10 8 6 4 2 k =1
3.75 ∞ Z =0.25 3.75
2.5 2.5
2 2
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Figure 2.2.3. Figure 2.2.4.
2.3. LE PORTIQUE II1
1 1 1 p1L p1L2 p1
2 p1L 2 p1L 2 8
h1 , Ω1 , I1
N p2 H T 1 M 1 p2 H h2 , Ω2 , I 2
p2H 2 p2H 2
Figure 2.3.2. p2 p2 H
MD
nb = 3 ; nl = 6 ; nm = 3 ; nn = 4 ; nr = 6 : Dh = 0 . L
Rv, A Rh, A Rh,D
MA Rv,D
Figure 2.3.1.
W = Z L h1 + H L + 8 (Z k )( H h2 )( H L )2 . 2.3.1.
2.3.2.
Lorsque p2 = 0 ( k = ∞ ) : W = Z L h1 + H L . 2.3.3.
2.3.4.
Pour L h1 = H h2 = 10 : W = 10Z + H L + 80 (Z k )( H L )2 .
Pour L h1 = 10 et H h2 = 5 : W = 10Z + H L + 40 (Z k )( H L )2 .