Page 350 - MORPHOLOGIE DES STRUCTURES
P. 350
www.academieroyale.be
350 LES PORTIQUES
2.5. LE PORTIQUE II3
L
p1
p1L p1L p1 L p1L2
22 2 8
N p2H T p2 H p2H 2 p2H 2 h1, Ω1, I1
2M 2
Figure 2.5.2. p2 h2 , Ω2 , I2 p2 H
nb = 3 ; nl = 6 ; nm = 2 ; nn = 4 ; nr = 4 : Dh = 1 .
Rh, A Rh,D
MA
Rv , A Rv , D MD
Figure 2.5.1.
W = ZL h1 + H L + 8 (Z k )( H h2 )( H L )2 . 2.5.1.
2.5.2.
Lorsque p2 = 0 ( k = ∞ ) : W = Z L h1 + H L . 2.5.3.
2.5.4.
Pour L h1 = H h2 = 10 : W = 10Z + H L + 80 ( Z k )( H L )2 .
Pour L h1 = 10 et H h2 = 5 : W = 10Z + H L + 40 ( Z k )( H L )2 .
20 L = H =10 20 L =10; H = 5
W h1 h2 W h1 h2
18 18
16 16
14 W W+1 H 14 W W+1H
kL kL
12 12
k =1 10 k =1
2
10 2
4
4 10 8 6
10 8 6 ∞
8∞ Z =0.75 8 Z =0.75
7.5 7.5
k =1 Z =0.375
k =1 6 2 Z =0.25
2 10 86 4
64 ∞
86
10
∞
4 4
3.75
3.75 ∞ 10 8 6 4 2 k =1 Z =0.375 ∞ 10 8 6 4 2 k =1
Z =0.25 2.5
2.5 2
2
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 01234567 8 9 10
Figure 2.5.3. Figure 2.5.4.