Page 106 - MORPHOLOGIE DES STRUCTURES
P. 106
www.academieroyale.be
106 SYNTHÈSE : INDICATEURS DE VOLUME ET DE DÉPLACEMENT D'UNE STRUCTURE ISOSTATIQUE
Soit, à titre d'exemple, une structure toute en acier S235, avec s ≈ 117,5 MPa, L = 30 m, p = c1 ⋅100 kN m,
pv = 250 19,25 k€͞m3, et une structure secondaire composée de profilés I tels
1kN m2 , es = c2 · €͞m2, es ≈ c3 ·
que k3 = 0 et k4 = 0,375 ; alors :
En = 30 1386 c3 H H 2 + 200 25c2 + 154 c1c3 H + 5775 c1c3 L €
h L 47 L 47
47
H
≈ H H 2 + (150c2 + 19,6596c1c3 ) H + 3,6862c1c3 L k€.
0,8847c3 h L L
H
Le premier terme représente la contribution de la structure secondaire et le second celle de l'enveloppe, qui ensem-
ble forment Es = Es1 + Ev2 , tandis que les deux derniers représentent la contribution de la structure principale, soit
Ev = Ev1 .
La figure 9.2.5. illustre Es , Ev et En en fonction de L H pour H h valant respectivement 10, 15 ou 20 et
c1 = c2 = c3 = 1 .
L'influence de la structure secondaire est donc négligeable ; par exemple, dans le cas présent, Ev2 En ≤ 5% pour
L H≥2.
90 [kEUR] hx pv = 1 k N m2
80 acier S235 En
70 p = 100 k N m Ev
L = 30 m
60 k3 = 0
k4 = 0,375
50
H h = 10
H h = 15
40 H h = 20
es = 250 EUR m2
30 ev1 = ev2 = 2,5 E UR kg
20
10 Es
L
0 H
0 5 10 15 20
Figure 9.2.5.
9.3. ENVELOPPE D'UNE MEMBRANE DE RÉVOLUTION
9.3.1. Influence de l'enveloppe sur la morphologie optimale
Le raisonnement est mené pour une calotte sphérique de diamètre L, de hauteur H et d'épaisseur de paroi constante
sous une charge uniformément répartie p (en N m2 ) sur la projection horizontale de la calotte, et dont les réactions
sont tangentes à cette dernière.