Page 386 - MORPHOLOGIE DES STRUCTURES
P. 386
www.academieroyale.be
386 LES PORTIQUES
20 L = H =10 20 L =10; H = 5
W h1 h2 W h1 h2
18 18
16 16
14 W W+ 3 H 14 W+ 3 H
2k L 2k L
W
12 12
10 10
8 2 k =1 4 2 k =1
10 6 4 86
8∞ 8 10
7.5 7.5
∞
Z =0.75 Z =0.75
6 6
∞ 84 2 k =1 ∞8
10 6 10 6 4 2 k =1
4 4 10 8 6 2
3.75 ∞ 10 8 6 42 k =1 Z =0.375 3.75 ∞ 4 k =1 Z =0.375
Z =0.25 Z =0.25
2.5 2.5
2 2
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Figure 2.14.3. Figure 2.14.4.
2.15. LE PORTIQUE V3
N1 max p1L L
N3 max 2 p1
p2H p2H
N N2 max 22 p1L2 p2H 2
T p2H 2 8 8
Figure 2.15.2. 8 h1 , Ω1 , I1
h2 , Ω2 , I2
M
p2 p2 H
nb = 5 ; nl = 4 ; nm = 4 ; nn = 4 ; nr = 10 : Dh = 1 . Ω3
Rh,D
Rh,A
Rv,A Rv , D
Figure 2.15.1.
W = Z (L h1 ) + (1+1 k ) H L + 2 (Z k )( H h2 )( H L )2 + (2 k )( H L )3
+3 (Ω2 Ω1 )(L H )2 +2(H L ) + ( Ω2 Ω3 ) 1+ (L H )2 3 2 . 2.15.1.
1 2.15.2.
Lorsque p2 = 0 ( k = ∞ ) : W = Z L h1 + H L .