Page 377 - MORPHOLOGIE DES STRUCTURES
P. 377
www.academieroyale.be
LES PORTIQUES 377
20 L = H = H =10 20 L =10; H = H = 5
W h1 h2 h3 W h1 h2 h3
18 W 18 W
16 16
14 39 + 12 I 3 + L 13 I 2 + 19 I3 + 1,5k L3 I3 14 39 + 12 I 3 + L 13 I 2 + 19 I3 +1,5k L3 I3
W+H I 2 H I1 I1 H3 I1 H3 I1
12 L 12 W +H I2 H I1 I1
2k(12 + 3I3 I 2 + 4(L H )(I 2) I1 + I 3 I1 ) L
10 10 2k (12 + 3 I3 I 2 + 4(L H )(I2) I1 + I 3 I1)
8 39 +12 Ω3 + H 13 Ω2 + 19 Ω 3 +1,5k L Ω3 8 39 + 12 Ω3 + 4 H 13 Ω2 +19 Ω 3 + 6k L Ω3
7.5 =W + H Ω2 L Ω1 Ω1 H Ω1 7.5
6 L 6 =W + H Ω2 L Ω1 Ω1 H Ω1
2k (12 + 3 Ω3 Ω2 + 4(H L))(Ω2 Ω1 + Ω3 Ω1 ) L
4 4 2k(12 + 3 Ω3 Ω2 + 16(H L)(Ω 2 Ω1 + Ω3 Ω1 )
3.75 3.75
k =1 k =1
2.5 2.5
2 2 2 2
4 4
10 8 6 10 8 6
∞
∞
k =1 Z =0.75 k =1 Z =0.75
Z =0.375
2 2 Z =0.375
Z =0.25
4 8 6 4
10 86 10
∞
∞
∞ 10 8 6 4 2 k =1
∞ 10 8 6 4 2 k =1
Z =0.25
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
12 Figure 2.11.3. 12 Figure 2.11.4.
Ω1σ L = H = H =10 Ω1σ L =10 ; H = H = 5
h1 h2 h3 h1 h2 h3
p1L p1L
10 10
88 Z =0.75 8
106 4 2 k = 1
∞ 8 Z =0.75
10 6 4 2 k = 1
6
6∞
4 8 2 k =1 4
106
4
2 k =1
Z =0.375 8 6 4 Z =0.375
Z =0.25 10 Z =0.25
∞ ∞
86 4 2 k = 1
8 2 k =1
10 10
∞ 64
2
2∞
LL
HH
00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Figure 2.11.5. Figure 2.11.6.