Page 54 - Vertical City
P. 54

54 the vertical city

   The volume contained in each horizontal principal
conduit 4 is thus: n²(n-2)iΩLx/16; and for the four: n 2(n-2)
iΩLx/4.

   This leads to a volume V  = n²Ωi[(n-2)Lx+(i-1)h]/2
contained in the whole system of vertical and horizon-
tal conduits deserving a gross floor area of P  = n²B²i,
it may also by expressed by V  = n²Ωih[i(n-2)(L/H+B/
H)+(i-1)]/2.

   The ratio V/P measures the financial load of the
network of conduits to each build gross square
meter: V/P = Ωh[i(n-2)(L/H+B/H)+(i-1)]/2B² or with
n = (P/(iB)²)1/2:

2V/ΩP = ɣ = h{i[1-2(L/H+B/H)]+(iP/B²)1/2(L/H+B/H)-1}/B².

   For a given value of P and in function of the chosen
rule (being either L/H or L/B), indifferent to n, it
depends only of i.

   Choosing the rule L/H = α = constant:

ɣ = h{i[1-2(α+B/ih)]+(iP/B²)1/2(α+B/ih)-1}/B²

   Figure  17 and table 1 with B  = 30 m and h  = 3,3 m
provide the corresponding values of ɣ with regard to i
for L/H = 2 et P respectively 2 million m² for the small
city and then 20, 80 and 320 million m².

∑4  n  - 1  k(niΩ Lx/2) = n2(n-2)iΩLx/16
    2
	 k = 1
   49   50   51   52   53   54   55   56   57   58   59