Page 404 - MORPHOLOGIE DES STRUCTURES
P. 404
www.academieroyale.be
404 LES PORTIQUES
2.19. LE PORTIQUE VI3
N1 p1L L
2 p1
p1L2
N5 8 x
N3(y)
N2(y) p2 H p2 H p2H 2 M p2H 2
N 2 2 8 8
h1, Ω1, I1
T p2 y h2 ,Ω2 , I 2 p2 H
Rh,D
Figure 2.19.2. Rh , A Ω3
Rh,E Rh,F
nb = 5 ; nl = 8 ; nm = 6 ; nn = 6 ; nr = 10 : Dh = 1 . Rv, A Rv,E Rv,F Rv,D
Figure 2.19.1.
N1 =− p1L b − p2 H , N2 (y) = − p1L 1+ b2 + p2 H − y 1,
2 H 2 2 H2 2 1+ H2 b2
N
N3 ( y) = − p1L 1+ b2 + H H2 1 et N5 = p2 H 1+ H2 .
2 H2 p2 y − 2 2 + b2 1+ H2 b2 2 b2
T T1 ( x ) = p1 (L 2 − x ) , T2 ( y) = T3 ( y) = p2 ( H 2 − y) et T4 = T5 = 0 .
M M1 ( x) = p1x (L − x) , M2 ( y) = −M3 ( y) = p2 y ( H − y) et M4 = M5 =0 .
2 2
– si 1+ H2 b2 ≥ 1 (4ZH h2 ) :
W = Z L + 1 b + 1 + b2 H + 2 H 1 + b2 + 1 h2 b2 1 + H + b H2 .
h1 2 H 1 + 2k H2 L k Z h2 H 2 16Z H H 2 1+ b2 b H L2
H2
– si 1+ H2 b2 ≤ 1 (4ZH h2 ) :
W = Z L + 1 b 1 + b2 H + 1 2 H +3 b H2 . 2.19.1.
h1 2 H + 1 + 2k H2 L k b H L2 2.19.2.
( )Lorsque p2 = 0 ( k = ∞ ) : W = Z L h1 + 0.5b H + 1 + b2 H 2 H L . 2.19.3.
Pour L h1 = H h2 = 10 (figure 2.19.3.) :
– si 1 + H2 b2 ≥ 1 (40Z ) :
W = 10Z + 1 b + 1 + b2 H + 2 1+ b2 + 1 b2 1 H2 + H + b H2 .
2 H 1 + 2k H2 L k 10Z H 2 160Z H 2 1+ b2 b H L2
– si 1 + H2 b2 ≤ 1 (40Z ) :
W = 10Z + 1 b 1 + b2 H + 1 2 H +3 b H2 .
2 H + 1 + 2k H2 L k b H L2