Page 397 - MORPHOLOGIE DES STRUCTURES
P. 397
www.academieroyale.be
LES PORTIQUES 397
70 α L = H = H =10 0.70 80 α L =10; H = H = 5 b
h1 h2 h3 b h1 h2 h3 H 0.80
H 0.65 70
0.75
60 Hα Hα 0.60 Hα Hα
bL bL 0.57 0.70
Z =0.25 60 bL bL
Z =0.375 0.55 0.65
Z =0.25
50 0.50 Z =0.375 0.60
0.46 0.57
Z =0.75 Z =0.75
0.45 0.55
50
0.40 0.50
40 Z =0.25 0.46
0.36
k=1 0.35 0.45
40 k=1 0.40
Z =0.375 0.36
2 0.30 2
0.35
30 4 34567 0.26 10 8 6 4
0.25 0.30
10 8 6 Figure 2.16.13. 0.26
30
20 0.25
10 Z =0.25 0.20
0 0.17 0.20
012 20 0.17
0.15
Z =0.375 Z =0.75
0.15
0.10 0.10
0.08 10 0.08
Z =0.75
0.05 0.05
L L
H
H
0
k =∞ 0 k =∞ 0
89 10
0 1 2 3 4 5 6 7 8 9 10
Figure 2.16.14.
2.17. LE PORTIQUE VI2,1
p2 H p1L L
2 2 p1
p1L p2H p2H
2 22 p2H 2 p1L2 h1, Ω1, I1
8 8 p2 h2 ,Ω2 , I 2 p2 H
N T p2H 2
8
Figure 2.17.2.
M
h3, Ω3, I3
Ω4
nb = 4 ; nl = 6 ; nm = 5 ; nn = 5 ; nr = 8 : Dh = 0 . Rh,A Rh,E Rh,D
Rv, A Rv,E Rv ,D
Figure 2.17.1.
– si 1+ H 2 b2 ≥ 1 (4ZH h2 ) : 2.17.1.
( ( ( ) ( ( ))) )( )W = ZL h1 + (1+1 (2k ))( H L) + (1 k ) b H + 2 H b + Z ( H h2 ) 1+ b2 H2 1+ h22 H2 16Z2 1+ H2 b2 + Z ( H h3 ) H2 L2 .
– si 1+ H 2 b2 ≤ 1 (4ZH h2 ) : 2.17.2.
( )W = ZL h1 + (1 + 1 (2k ))( H L ) + (1 k )((3 2)(b H ) + 2 H b + Z ( H h3 )) H 2 L2 .